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Preliminaries

• Representation learning 
– Using machine learning techniques to derive data 

representation 

• Distributed representation 
– Different from one-hot representation, it uses dense 

vectors to represent data points

• Embedding
– Mapping information entities into a low-dimensional 

space



Softmax function

• It transforms a K-dimensional real vector into 
a probability distribution

– A common transformation function to derive 
objective functions for classification or discrete 
variable modeling



Distributional semantics

• Target word = “stars”



Distributional semantics

• Collect the contextual words for “stars”



Word2Vec

• Input: a sequence of words from a vocabulary 
V

• Output: a fixed-length vector for each term in 
the vocabulary

– vw

It implements the idea of distributional semantics using a shallow neural network model. 



Architecture 1: CBOW

• CBOW predicts the current word using 
surrounding contexts

– Pr(𝑤𝑡|context(𝑤𝑡))

• Window size 2c

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐]



Architecture 1: CBOW

• CBOW predicts the current word using 
surrounding contexts

– Pr(𝑤𝑡|context(𝑤𝑡))

– Using a K-dimensional vector to
represent words

• 𝑤𝑡 → 𝒗𝑤𝑡

•  𝒗𝑤𝑡
=

 𝑖=𝑡−𝑐
𝑡+𝑐 𝒗

𝑤𝑖

2𝑐
(𝑖 ≠ 𝑡)



Architecture 1: CBOW

• CBOW predicts the current word using 
surrounding contexts

– Pr(𝑤𝑡|context(𝑤𝑡))

– Basic Idea

• Given the context of the current 
word    𝒗𝑤𝑡

• Sim( 𝒗𝑤𝑡
, 𝒗𝑤𝑡

) > Sim( 𝒗𝑤𝑡
, 𝒗𝑤𝑗

) 



Architecture 1: CBOW

• How to formulate the idea

– Using a softmax function

– Considered as a classification problem

• Each word is a classification label

𝑃 𝑤 wcontext =
exp(𝑠𝑖𝑚( 𝒗𝑤 , 𝒗𝑤))

 𝑤′ exp(𝑠𝑖𝑚( 𝒗𝑤 , 𝒗𝑤′))



Architecture 2

• Skip-gram predicts surrounding words using 
the current word

– Pr(context(𝑤𝑡) | 𝑤𝑡)

• Window size 2c

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐]



Architecture 2

• Skip-gram predicts surrounding words using 
the current word

– Pr(context(𝑤𝑡) | 𝑤𝑡)

• Window size 2c

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐]

𝑃(𝑤′|𝑤) =
exp(𝑠𝑖𝑚(𝒗𝑤 , 𝒗𝑤′))

 𝑤′′ exp(𝑠𝑖𝑚(𝒗𝑤 , 𝒗𝑤′′))
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• DeepWalk

• Node2vec
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• LINE

• SDNE



Network Embedding Models

• DeepWalk (Perozzi et al., KDD 2014)

• Node2vec

• GENE

• LINE

• SDNE



What is network embedding?

• We map each node in a network into a low-
dimensional space

– Distributed representation for nodes

– Similarity between nodes indicate the link 
strength 

– Encode network information and generate node 
representation

17



Example

• Zachary’s Karate Network:
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DeepWalk

• DeepWalk learns a latent representation of 
adjacency matrices using deep learning 
techniques developed for language modeling

19



Language modeling

• Learning a representation of a word from 
documents (word co-occurrence):

– word2vec:

• The learned representations capture inherent 
structure

• Example:

20



From language modeling to graphs

• Idea:
– Nodes <--> Words
– Node sequences <--> Sentences

• Generating node sequences:
– Using random walks

• short random walks = sentences

• Connection:
– Words frequency in a natural language corpus follows a 

power law.
– Vertex frequency in random walks on scale free graphs 

also follows a power law.

21



Framework
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Representation Mapping

23



Deep Learning Structure: 
Skip-gram model

24

Skip-gram: The input to the model is wi, 
and the output could be  
wi−1,wi−2,wi+1,wi+2

v3

Φ(v1)



Experiments

• Node Classification

– Some nodes have labels, some don’t

• DataSet

– BlogCatalog

– Flickr

– YouTube

25



Results: BlogCatalog
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Network Embedding Models

• DeepWalk

• Node2vec (Grover et al., KDD 2016)

• GENE

• LINE

• SDNE



Node2Vec

• A generalized version of DeepWalk

– Objective function

– Conditional independence

– Symmetry in feature space



Node2Vec

– a network neighborhood of node u generated 
through a neighborhood sampling strategy S.

– The key lies in how to find a neighbor on the 
graph

– How DeepWalk solve this?



How Node2vec Do this?

• Motivation

– BFS:  broader  homophily

– DFS:  deeper   structural equivalence 



How Node2vec Do this?

• Can we combine the merits of DFS and BFS

– BFS:  broader  homophily

– DFS:  deeper   structural equivalence



How Node2vec Do this?

• Explaining the sampling strategy 



Node2vec Algorithm



Comparison between DeepWalk and 
Node2vec

• They actually have the same objective 
function and formulations 

• The difference lies in how to generate random 
walks

• BEAUTY: node  word, path  sentence



Network Embedding Models

• DeepWalk

• Node2vec

• GENE (Chen et al., CIKM 2016)

• LINE

• SDNE



GENE

• Incorporate Group Information to Enhance 
Network Embedding

– When group information is available, how to 
model it?

• Group control member 



GENE

• Recall doc2vec

• How to use doc2vec to model group and 
member vectors



GENE

• Incorporate Group Information to Enhance 
Network Embedding

– When group information is available, how to 
model it?



GENE

• Formulate the idea



Network Embedding Models

• DeepWalk

• Node2vec

• GENE

• LINE (Tang et al., WWW 2015)

• SDNE



First-order Proximity

• The local pairwise proximity between 
the vertices
– Determined by the observed links

• However, many links between the 
vertices are missing
– Not sufficient for preserving the entire 

network structure

1

2

3

4

5

6

7

8

9

10

Vertex 6 and 7 have a large
first-order proximity

LINE

From Jian Tang’s slides



• The proximity between the
neighborhood structures of the 
vertices

• Mathematically, the second-order 
proximity between each pair of 
vertices (u,v) is determined by:

1

2

3

4

5

6

7

8

9

10

Vertex 5 and 6 have a large
second-order proximity

 𝑝𝑢 = (𝑤𝑢1, 𝑤𝑢2, … , 𝑤𝑢 𝑉 )

 𝑝𝑣 = (𝑤𝑣1, 𝑤𝑣2, … , 𝑤𝑣 𝑉 )

 𝑝5 = (1,1, 1,1,0,0,0,0,0,0)

 𝑝6 = (1,1, 1,1,0,0,5,0,0,0)

Second-order Proximity

LINE
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Preserving the First-order Proximity

• Given  an undirected edge 𝑣𝑖 , 𝑣𝑗 , the joint probability of 𝑣𝑖 , 𝑣𝑗

𝑝1 𝑣𝑖 , 𝑣𝑗 =
1

1 + exp(−𝑢𝑖
𝑇 ⋅ 𝑢𝑗)

𝑂1 = 𝑑(  𝑝1 ⋅,⋅ , 𝑝1 ⋅,⋅ ) 

∝ −  

𝑖,𝑗 ∈𝐸

𝑤𝑖𝑗 log 𝑝1(𝑣𝑖 , 𝑣𝑗)

 𝑝1 𝑣𝑖 , 𝑣𝑗 =
𝑤𝑖𝑗

 (𝑖′,𝑗′)𝑤𝑖′𝑗′

𝑢𝑖: Embedding  of vertex𝑣𝑖

KL-divergence• Objective:

𝑣𝑖

LINE
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Preserving the Second-order Proximity

• Given a directed edge (𝑣𝑖 , 𝑣𝑗), the conditional probability of 𝑣𝑗 given 𝑣𝑖 is:

𝑝2 𝑣𝑗|𝑣𝑖 =
exp(𝑢𝑗

′𝑇 ⋅ 𝑢𝑖)

 
𝑘=1
|𝑉|

exp(𝑢𝑘
′𝑇⋅ 𝑢𝑖)

 𝑝2 𝑣𝑗|𝑣𝑖 =
𝑤𝑖𝑗

 𝑘∈𝑉𝑤𝑖𝑘

𝑂2 = 

𝑖∈𝑉

𝜆𝑖𝑑(  𝑝2 ⋅ 𝑣𝑖 , 𝑝2 ⋅ 𝑣𝑖 )

∝ −  

𝑖,𝑗 ∈𝐸

𝑤𝑖𝑗 log 𝑝2(𝑣𝑗|𝑣𝑖)

𝜆𝑖:  Prestige of vertex in the network 
𝜆𝑖 =  𝑗𝑤𝑖𝑗

𝑢𝑖: Embedding  of vertex i when i is a source node;
𝑢𝑖
′: Embedding  of vertex i when i is a target node. 

• Objective:

LINE
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Preserving both Proximity

• Concatenate the embeddings individually learned by the two proximity 

First-order

Second-order

LINE

From Jian Tang’s slides



Network Embedding Models

• DeepWalk

• Node2vec

• GENE

• LINE

• SDNE (Wang et al., KDD 2016)



SDNE

• Preliminary

– Autoencoder



SDNE

• Preliminary

– Autoencoder

• The simplest case: a single hidden layer



SDNE

• Preliminary

– Autoencoder

• The simplest case: a single hidden layer



SDNE

• First-order proximity

– Linked nodes should be coded similarly 



SDNE

• Second-order proximity

– The model should reconstruct the neighborhood 
vectors

– Similar nodes even without links 
can have similar codes

• Or we can not reconstruct the 
neighborhood



SDNE

• Network reconstruction

• Link prediction



Network Embedding Models

• DeepWalk
– Node sentences + word2vec

• Node2vec
– DeepWalk + more sampling strategies 

• GENE
– Group~document + doc2vec(DM, DBOW)

• LINE
– Shallow + first-order + second-order proximity 

• SDNE
– Deep + First-order + second-order proximity 



Applications of Network Embedding

• Basic applications

• Data Visualization 

• Text classification

• Recommendation 



Basic Applications

• Network reconstruction

• Link prediction 

• Clustering

• Feature coding 

– Node classification

• Demographic prediction 



Applications of Network Embedding

• Basic applications

• Data Visualization (Tang et al., WWW 2016)

• Text classification

• Recommendation 



Data Visualization



Data Visualization

• Construction of the KNN graph



Data Visualization

• Visualization-based embedding



Data Visualization

• Non-linear function



Data Visualization

• Accuracy 

• Running time



Data Visualization



Applications of Network Embedding

• Basic applications

• Data Visualization 

• Text classification (Tang et al., KDD 2015)

• Recommendation 



Network embedding helps text modeling

Text representation, e.g., word and document 
representation, …

…

degree

network

edge

node
word 

document

classification

text

embedding

word co-occurrence networkFree text

Deep learning has been attracting increasing
attention …

A future direction of deep learning is to integrate
unlabeled data …

The Skip-gram model is quite effective and 
efficient …

Information networks encode the relationships
between the data objects …

If we have the word network, we can a network embedding model to learn word representations. 

Text Classification 
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• Adapt the advantages of unsupervised text embedding approaches but naturally 
utilize the labeled data for specific tasks

• Different levels of word co-occurrences: local context-level, document-level, label-
level

Text corpora

degree

network

edge

node
word 

document

classification

text

embedding

(a) word-word network

Heterogeneous text network

Text representation, e.g., word and document 
representation, …

…

label

label

label document

Deep learning has been attracting increasing
attention …

A future direction of deep learning is to integrate
unlabeled data …

The Skip-gram model is quite effective and 
efficient …

Information networks encode the relationships
between the data objects …

null

null

null

text

information

network

word
…

classification

label_2

label_1

label_3
…

(c) word-label network

…

text

information

network

word
…

classification

doc_1

doc_2

doc_3

doc_4
…

(b) word-document network

…

Text Classification 
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Bipartite Network Embedding

– Extend previous work LINE (Tang et al.  WWW’2015) on large-scale information network 
embedding

– Preserve the first-order and second-order proximity

– Only consider the second-order proximity here

Tang et al. LINE: Large-scale Information Network Embedding. WWW’2015

𝑉𝐴 𝑉𝐵

𝑣𝑖

𝑣𝑗p 𝑣𝑗|𝑣𝑖 =
exp(𝑢𝑗

𝑇⋅𝑢𝑖)

 
𝑗′∈𝐵

exp(𝑢𝑗′
𝑇 ⋅𝑢𝑖)

𝑂 = −  

𝑖,𝑗 ∈𝐸

𝑤𝑖𝑗 log 𝑝(𝑣𝑗|𝑣𝑖)

• For each edge 𝑣𝑖 , 𝑣𝑗 , define a conditional probability

• Edge sampling and negative sampling for optimization

• Objective:

Text Classification 
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Heterogeneous Text Network Embedding

• Heterogeneous text network: three bipartite networks
– Word-word (word-context), word-document, word-label network

– Jointly embed the three bipartite networks

• Objective

• where 

O𝑝𝑡𝑒 = 𝑂𝑤𝑤 + 𝑂𝑤𝑑 + 𝑂𝑤𝑙

𝑂𝑤𝑤 = −  

𝑖,𝑗 ∈𝐸𝑤𝑤

𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑣𝑗)

𝑂𝑤𝑑 = −  

𝑖,𝑗 ∈𝐸𝑤𝑑

𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑑𝑗)

𝑂𝑤𝑙 = −  

𝑖,𝑗 ∈𝐸𝑤𝑙

𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑙𝑗)

Objective for word-word network

Objective for word-document network

Objective for word-label network

Text Classification 
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Results on Long Documents: Predictive

20newsgroup Wikipedia IMDB

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Unsupervised LINE(𝐺𝑤𝑑) 79.73 78.40 80.14 80.13 89.14 89.14

Predictive
embedding

CNN 78.85 78.29 79.72 79.77 86.15 86.15

CNN(pretrain) 80.15 79.43 79.25 79.32 89.00 89.00

PTE(𝐺𝑤𝑙) 82.70 81.97 79.00 79.02 85.98 85.98

PTE(𝐺𝑤𝑤 + 𝐺𝑤𝑙) 83.90 83.11 81.65 81.62 89.14 89.14

PTE(𝐺𝑤𝑑 + 𝐺𝑤𝑙) 84.39 83.64 82.29 82.27 89.76 89.76

PTE(pretrain) 82.86 82.12 79.18 79.21 86.28 86.28

PTE(joint) 84.20 83.39 82.51 82.49 89.80 89.80

PTE(joint) > PTE(pretrain)

PTE(joint) > PTE(𝐺𝑤𝑙)

PTE(joint) > CNN/CNN(pretrain)

Text Classification 
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Results on Short Documents: Predictive

DBLP MR Twitter

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Unsupervised
embedding

LINE
(𝐺𝑤𝑤 + 𝐺𝑤𝑑)

74.22 70.12 71.13 71.12 73.84 73.84

Predictive
embedding

CNN 76.16 73.08 72.71 72.69 75.97 75.96

CNN(pretrain) 75.39 72.28 68.96 68.87 75.92 75.92

PTE(𝐺𝑤𝑙) 76.45 72.74 73.44 73.42 73.92 73.91

PTE(𝐺𝑤𝑤 + 𝐺𝑤𝑙) 76.80 73.28 72.93 72.92 74.93 74.92

PTE(𝐺𝑤𝑑 + 𝐺𝑤𝑙) 77.46 74.03 73.13 73.11 75.61 75.61

PTE(pretrain) 76.53 72.94 73.27 73.24 73.79 73.79

PTE(joint) 77.15 73.61 73.58 73.57 75.21 75.21

PTE(joint) > PTE(pretrain)

PTE(joint) > PTE(𝐺𝑤𝑙)

PTE(joint) ≈ CNN/CNN(pretrain)

Text Classification 
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Applications of Network Embedding

• Basic applications

• Data Visualization 

• Text classification

• Recommendation (Zhao et al., AIRS 2016)



Recommendation

• Learning Distributed Representations for 
Recommender Systems with a Network 
Embedding Approach

– Motivation



Recommendation

• From training records to networks



Recommendation

• Given any edge in the network



Recommendation

• User-item recommendation



Recommendation

• User-item-tag recommendation



Conclusions

• There are no boundaries between data types 
and research areas in terms of mythologies 

– Data models are the core

• Even if the ideas are similar, we can move 
from shallow to deep if the performance 
actually improves



Disclaimer

• For convenience, I directly copy some original 
slides or figures from the referred papers. I am 
sorry but I did not ask for the permission of 
each referred author. I thank you for these 
slides. I will not distribute your original slides.
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